Enhanced resonance light scattering properties of gold nanoparticles due to cooperative binding.

نویسندگان

  • A Cruz Enriquez
  • I A Rivero Espejel
  • E Andrés García
  • M E Díaz-García
چکیده

The interaction of 11-mercaptoundecanoic acid capped gold nanoparticles (MUA-GNPs) with europium ions and aminoacids has been studied by UV-Vis spectrophotometry, fluorescence, confocal fluorescence microscopy, resonance light scattering and TEM. Results demonstrated that hyper-Rayleigh scattering emission occurs upon the addition of lysine to the MUA-GNPs-Eu(III) system, thus providing an inherently sensitive method for lysine determination. The effects of geometrical factors of the gold nanoparticles (aspect ratio, particle size, cluster formation) and the surrounding medium (pH) on this behavior are discussed. The cooperative binding interactions of Eu(3+) and lysine with gold nanoparticles permitted the discrimination of lysine from other amino acids. The probable mechanism for the spectral changes and the enhanced resonance light scattering observed is outlined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Theoretical Analysis of the Optical Properties of Gold Nanoparticles Using DDA Approximation

   This article describes a study, using numerical simulation, of the optical properties of nano particles as a function of their size. Many methods introduced to simulate and calculate the interaction of light and particle, such as Mie analysis, boundary element and finite element methods. The Discrete Dipole Approximation (DDA), wherein a target geometry is modeled as a ...

متن کامل

Interaction of Laser Beam and Gold Nanoparticles, Study of Scattering Intensity and the Effective Parameters

 In this paper, the optical properties of gold nanoparticles investigated. For this purpose the scattering intensity of a laser beam incident on gold nanoparticles has been studied using Mie theory and their respective curves versus different parameters such as scattering angle, wavelength of the laser beam and the size of gold nanoparticles are plotted. Investigating and comparison of the depi...

متن کامل

Manganese mine actinobacterial mediated gold nanoparticles synthesis and their antibacterial activity

Background and Objectives: Actinobacteria efficiently can produce different nanoparticles with different biological properties due to their ability to produce secondary metabolites. The aim of present study, isolation and screening of gold nanoparticles via producing actinobacteria from the soil were studied and their antibacterial activities was evaluate. Methods: In this study, after iso...

متن کامل

The influence of mechanical strain on the optical properties of spherical gold nanoparticles

We utilize classical Mie scattering theory to investigate the effects of tensile and compressive mechanical strain on both the far field (absorption, scattering and extinction efficiencies) and near field (surface enhanced Raman scattering) optical properties of spherical gold nanoparticles with diameters ranging from 10 to 100nm. By accounting for the strain effects on both the ionic core (bou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical and bioanalytical chemistry

دوره 391 3  شماره 

صفحات  -

تاریخ انتشار 2008